Al-based quasicrystal as a thermoelectric material

Thermoelectric figure of merit

$$ZT = \frac{S^2 \sigma}{K}$$
Metal: low, Semiconductivity σ
Metal: high, Semiconductivity κ
Crystalline: high, Amore

Seebeck coefficient S

Metal: low, Semiconductor: high, Quasicrystal: medium

Metal: high, Semiconductor: low, Quasicrystal: medium

Crystalline: high, Amorphous: low, Quasicrystalline: low

Typical properties

Bi₂Te₃ (Conventional material) $S: ^200\mu V/K$ σ : ~1000/ Ω cm κ: ~1W/mK ZT: ~1 Cost: expensive(\triangle Bi, \triangle Te)

Band gap: ~0.2eV

Al₆₈Ga₃Pd₂₀Mn₉ Quasicrystal (the highest performance so far*)

S: ~90μV/K ×

 σ : ~700/ Ω cm \triangle

κ: ~1W/mK@

ZT: ~0.26△

Cost: still expensive(\bigcirc Al, \triangle Ga, \triangle Pd, \triangle Mn)

Band gap: \times (pseudo-gap)

Key point

- ✓ Electrons and Holes may compensate each other in quasicrystals (like semimetal).
- ✓ How to introduce a narrow band gap?