Al-based quasicrystal as a thermoelectric material ## Thermoelectric figure of merit $$ZT = \frac{S^2 \sigma}{K}$$ Metal: low, Semiconductivity σ Metal: high, Semiconductivity κ Crystalline: high, Amore Seebeck coefficient S Metal: low, Semiconductor: high, Quasicrystal: medium Metal: high, Semiconductor: low, Quasicrystal: medium Crystalline: high, Amorphous: low, Quasicrystalline: low ## Typical properties Bi₂Te₃ (Conventional material) $S: ^200\mu V/K$ σ : ~1000/ Ω cm κ: ~1W/mK ZT: ~1 Cost: expensive(\triangle Bi, \triangle Te) Band gap: ~0.2eV Al₆₈Ga₃Pd₂₀Mn₉ Quasicrystal (the highest performance so far*) S: ~90μV/K × σ : ~700/ Ω cm \triangle κ: ~1W/mK@ ZT: ~0.26△ Cost: still expensive(\bigcirc Al, \triangle Ga, \triangle Pd, \triangle Mn) Band gap: \times (pseudo-gap) ## Key point - ✓ Electrons and Holes may compensate each other in quasicrystals (like semimetal). - ✓ How to introduce a narrow band gap?